
9.1 IntroductIon to LIst

The data type list is an ordered sequence which is
mutable and made up of one or more elements. Unlike
a string which consists of only characters, a list can
have elements of different data types, such as integer,
float, string, tuple or even another list. A list is very
useful to group together elements of mixed data types.
Elements of a list are enclosed in square brackets and
are separated by comma. Like string indices, list indices
also start from 0.
Example 9.1

#list1 is the list of six even numbers
>>> list1 = [2,4,6,8,10,12]
>>> print(list1)
[2, 4, 6, 8, 10, 12]

#list2 is the list of vowels
>>> list2 = ['a','e','i','o','u']
>>> print(list2)
['a', 'e', 'i', 'o', 'u']

#list3 is the list of mixed data types
>>> list3 = [100,23.5,'Hello']
>>> print(list3)
[100, 23.5, 'Hello']

#list4 is the list of lists called nested
#list
>>> list4 =[['Physics',101],['Chemistry',202],
 ['Maths',303]]
>>> print(list4)
[['Physics', 101], ['Chemistry', 202],
 ['Maths', 303]]

9.1.1 Accessing Elements in a List
The elements of a list are accessed in the same way as
characters are accessed in a string.

“Measuring programming
progress by lines of code

is like measuring aircraft
building progress by weight.”

–Bill Gates

Chapter 9

Lists

In this chapter

 » Introduction to List
 » List Operations
 » Traversing a List
 » List Methods and

Built-in Functions
 » Nested Lists
 » Copying Lists
 » List as Arguments

to Function
 » List Manipulation

Ch 9.indd 189 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi190

#initializes a list list1
>>> list1 = [2,4,6,8,10,12]
>>> list1[0] #return first element of list1
2
>>> list1[3] #return fourth element of list1
8
#return error as index is out of range
>>> list1[15]
IndexError: list index out of range
#an expression resulting in an integer index
>>> list1[1+4]
12
>>> list1[-1] #return first element from right
12
#length of the list list1 is assigned to n
>>> n = len(list1)
>>> print(n)
6
#return the last element of the list1
>>> list1[n-1]
12
#return the first element of list1
>>> list1[-n]
2

9.1.2 Lists are Mutable
In Python, lists are mutable. It means that the contents
of the list can be changed after it has been created.

#List list1 of colors
>>> list1 = ['Red','Green','Blue','Orange']
#change/override the fourth element of list1
>>> list1[3] = 'Black'
>>> list1 #print the modified list list1
['Red', 'Green', 'Blue', 'Black']

9.2 LIst operatIons

The data type list allows manipulation of its contents
through various operations as shown below.

9.2.1 Concatenation
Python allows us to join two or more lists using
concatenation operator depicted by the symbol +.

#list1 is list of first five odd integers
>>> list1 = [1,3,5,7,9]
#list2 is list of first five even integers
>>> list2 = [2,4,6,8,10]
#elements of list1 followed by list2

notes

Ch 9.indd 190 08-Apr-19 12:40:13 PM

Reprint 2025-26

Lists 191

>>> list1 + list2
[1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
>>> list3 = ['Red','Green','Blue']
>>> list4 = ['Cyan', 'Magenta', 'Yellow'
,'Black']
>>> list3 + list4
['Red','Green','Blue','Cyan','Magenta',
 'Yellow','Black']

Note that, there is no change in ongoing lists, i.e.,
list1, list2, list3, list4 remain the same
after concatenation operation. If we want to merge two
lists, then we should use an assignment statement to
assign the merged list to another list. The concatenation
operator '+’ requires that the operands should be of list
type only. If we try to concatenate a list with elements of
some other data type, TypeError occurs.

>>> list1 = [1,2,3]
>>> str1 = "abc"
>>> list1 + str1
TypeError: can only concatenate list (not
"str") to list

9.2.2 Repetition
Python allows us to replicate a list using repetition
operator depicted by symbol *.

>>> list1 = ['Hello']
#elements of list1 repeated 4 times
>>> list1 * 4
['Hello', 'Hello', 'Hello', 'Hello']

9.2.3 Membership
Like strings, the membership operators in checks if
the element is present in the list and returns True, else
returns False.

>>> list1 = ['Red','Green','Blue']
>>> 'Green' in list1
True
>>> 'Cyan' in list1
False

The not in operator returns True if the element is not
present in the list, else it returns False.

>>> list1 = ['Red','Green','Blue']
>>> 'Cyan' not in list1
True
>>> 'Green' not in list1
False

notes

Ch 9.indd 191 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi192

9.2.4 Slicing
Like strings, the slicing operation can also be applied
to lists.

>>> list1 =['Red','Green','Blue','Cyan',
'Magenta','Yellow','Black']
>>> list1[2:6]
['Blue', 'Cyan', 'Magenta', 'Yellow']

 #list1 is truncated to the end of the list
>>> list1[2:20] #second index is out of range
['Blue', 'Cyan', 'Magenta', 'Yellow',
'Black']

>>> list1[7:2] #first index > second index
[] #results in an empty list

#return sublist from index 0 to 4
>>> list1[:5] #first index missing
['Red','Green','Blue','Cyan','Magenta']

#slicing with a given step size
>>> list1[0:6:2]
['Red','Blue','Magenta']

#negative indexes
#elements at index -6,-5,-4,-3 are sliced
>>> list1[-6:-2]
['Green','Blue','Cyan','Magenta']

#both first and last index missing
>>> list1[::2] #step size 2 on entire list
['Red','Blue','Magenta','Black']

#negative step size
#whole list in the reverse order
>>> list1[::-1]
['Black','Yellow','Magenta','Cyan','Blue',
'Green','Red']

9.3 traversIng a LIst

We can access each element of the list or traverse a list
using a for loop or a while loop.
(A) List Traversal Using for Loop:

>>> list1 = ['Red','Green','Blue','Yellow',
 'Black']

notes

Ch 9.indd 192 08-Apr-19 12:40:13 PM

Reprint 2025-26

Lists 193

>>> for item in list1:
 print(item)

 Output:
Red
Green
Blue
Yellow
Black

Another way of accessing the elements of the list is
using range() and len() functions:

>>> for i in range(len(list1)):
 print(list1[i])

Output:
Red
Green
Blue
Yellow
Black

(B) List Traversal Using while Loop:
>>> list1 = ['Red','Green','Blue','Yellow',
 'Black']
>>> i = 0
>>> while i < len(list1):
 print(list1[i])
 i += 1

Output:
Red
Green
Blue
Yellow
Black

9.4 LIst Methods and BuILt-In FunctIons

The data type list has several built-in methods that
are useful in programming. Some of them are listed in
Table 9.1.

Table 9.1 Built-in functions for list manipulations

Method Description Example

len() Returns the length of the list passed as
the argument

>>> list1 = [10,20,30,40,50]
>>> len(list1)
5

list() Creates an empty list if no argument is
passed

>>> list1 = list()
>>> list1

len(lis t1) returns the
length or total number of

elements of list1.

Ch 9.indd 193 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi194

Creates a list if a sequence is passed as
an argument

[]
>>> str1 = 'aeiou'
>>> list1 = list(str1)
>>> list1
['a', 'e', 'i', 'o', 'u']

append() Appends a single element passed as an
argument at the end of the list

The single element can also be a list

>>> list1 = [10,20,30,40]
>>> list1.append(50)
>>> list1
[10, 20, 30, 40, 50]
>>> list1 = [10,20,30,40]
>>> list1.append([50,60])
>>> list1
[10, 20, 30, 40, [50, 60]]

extend() Appends each element of the list passed
as argument to the end of the given list

>>> list1 = [10,20,30]
>>> list2 = [40,50]
>>> list1.extend(list2)
>>> list1
[10, 20, 30, 40, 50]

insert() Inserts an element at a particular index
in the list

>>> list1 = [10,20,30,40,50]
>>> list1.insert(2,25)
>>> list1
[10, 20, 25, 30, 40, 50]
>>> list1.insert(0,5)
>>> list1
[5, 10, 20, 25, 30, 40, 50]

count() Returns the number of times a given
element appears in the list

>>> list1 = [10,20,30,10,40,10]
>>> list1.count(10)
3
>>> list1.count(90)
0

index() Returns index of the first occurrence of
the element in the list. If the element is
not present, ValueError is generated

>>> list1 = [10,20,30,20,40,10]
>>> list1.index(20)
1
>>> list1.index(90)
ValueError: 90 is not in list

remove() Removes the given element from the
list. If the element is present multiple
times, only the first occurrence is
removed. If the element is not present,
then ValueError is generated

>>> list1 = [10,20,30,40,50,30]
>>> list1.remove(30)
>>> list1
[10, 20, 40, 50, 30]

>>> list1.remove(90)
ValueError:list.remove(x):x not
in list

pop() Returns the element whose index is
passed as parameter to this function
and also removes it from the list. If no
parameter is given, then it returns and
removes the last element of the list

>>> list1 = [10,20,30,40,50,60]
>>> list1.pop(3)
40
>>> list1
[10, 20, 30, 50, 60]
>>> list1 = [10,20,30,40,50,60]
>>> list1.pop()
60

Ch 9.indd 194 21-May-19 12:28:25 PM

Reprint 2025-26

Lists 195

>>> list1
[10, 20, 30, 40, 50]

reverse() Reverses the order of elements in the
given list

>>> list1 = [34,66,12,89,28,99]
>>> list1.reverse()
>>> list1
[99, 28, 89, 12, 66, 34]

>>> list1 = ['Tiger' ,'Zebra' ,
'Lion' , 'Cat' ,'Elephant' ,'Dog']
>>> list1.reverse()
>>> list1
['Dog', 'Elephant', 'Cat',
'Lion', 'Zebra', 'Tiger']

sort() Sorts the elements of the given list
in-place

>>>list1 = ['Tiger','Zebra','Lion',
'Cat', 'Elephant' ,'Dog']
>>> list1.sort()
>>> list1
['Cat', 'Dog', 'Elephant', 'Lion',
'Tiger', 'Zebra']

>>> list1 = [34,66,12,89,28,99]
>>> list1.sort(reverse = True)
>>> list1
[99,89,66,34,28,12]

sorted() It takes a list as parameter and creates a
new list consisting of the same elements
arranged in sorted order

>>> list1 = [23,45,11,67,85,56]
>>> list2 = sorted(list1)
>>> list1
[23, 45, 11, 67, 85, 56]
>>> list2
[11, 23, 45, 56, 67, 85]

min()

max()

sum()

Returns minimum or smallest element
of the list

Returns maximum or largest element of
the list
Returns sum of the elements of the list

>>> list1 = [34,12,63,39,92,44]
>>> min(list1)
12
>>> max(list1)
92
>>> sum(list1)
284

9.5 nested LIsts

When a list appears as an element of another list, it is
called a nested list.
Example 9.2

>>> list1 = [1,2,'a','c',[6,7,8],4,9]
#fifth element of list is also a list
>>> list1[4]
[6, 7, 8]

To access the element of the nested list of list1, we have
to specify two indices list1[i][j]. The first index i
will take us to the desired nested list and second index
j will take us to the desired element in that nested list.

Ch 9.indd 195 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi196

>>> list1[4][1]
7
#index i gives the fifth element of list1
#which is a list
#index j gives the second element in the
#nested list

9.6 copyIng LIsts

Given a list, the simplest way to make a copy of the list
is to assign it to another list.

>>> list1 = [1,2,3]
>>> list2 = list1
>>> list1
[1, 2, 3]
>>> list2
[1, 2, 3]

The statement list2 = list1 does not create a
new list. Rather, it just makes list1 and list2 refer
to the same list object. Here list2 actually becomes an
alias of list1. Therefore, any changes made to either of
them will be reflected in the other list.

>>> list1.append(10)
>>> list1
[1, 2, 3, 10]
>>> list2
[1, 2, 3, 10]

We can also create a copy or clone of the list as a
distinct object by three methods. The first method uses
slicing, the second method uses built-in function list()
and the third method uses copy() function of python
library copy.
Method 1
We can slice our original list and store it into a new
variable as follows:

newList = oldList[:]

Example 9.3
>>> list1 = [1,2,3,4,5]
>>> list2 = list1[:]
>>> list2
[1, 2, 3, 4, 5]

Method 2
We can use the built-in function list() as follows:

newList = list(oldList)

Ch 9.indd 196 08-Apr-19 12:40:13 PM

Reprint 2025-26

Lists 197

Example 9.4
>>> list1 = [10,20,30,40]
>>> list2 = list(list1)
>>> list2
[10, 20, 30, 40]

Method 3
We can use the copy () function as follows:

import copy #import the library copy
#use copy()function of library copy
newList = copy.copy(oldList)

Example 9.5
>>> import copy
>>> list1 = [1,2,3,4,5]
>>> list2 = copy.copy(list1)
>>> list2
[1, 2, 3, 4, 5]

9.7 List as argument to a Function

Whenever a list is passed as an argument to a function,
we have to consider two scenarios:

(A) Elements of the original list may be changed,
i.e. changes made to the list in the function are
reflected back in the calling function.

For example in the following program list list1
of numbers is passed as an argument to function
increment(). This function increases every element of
the list by 5.
Program 9-1 Program to increment the elements of a

list. The list is passed as an argument to
a function.

#Program 9-1
#Function to increment the elements of the list passed as argument
def increment(list2):
 for i in range(0,len(list2)):
 #5 is added to individual elements in the list
 list2[i] += 5
 print('Reference of list Inside Function',id(list2))
#end of function
list1 = [10,20,30,40,50] #Create a list
print("Reference of list in Main",id(list1))
print("The list before the function call")
print(list1)
increment(list1) #list1 is passed as parameter to function
print("The list after the function call")
print(list1)

Ch 9.indd 197 21-May-19 12:29:45 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi198

Output:
Reference of list in Main 70615968
The list before the function call
[10, 20, 30, 40, 50]
Reference of list Inside Function 70615968 #The id remains same
The list after the function call
[15, 25, 35, 45, 55]

Observe that, when we pass a list as an argument, we
actually pass a reference to the list. Hence any change
made to list2 inside the function is reflected in the
actual list list1.

(B) If the list is assigned a new value inside the
function then a new list object is created and
it becomes the local copy of the function. Any
changes made inside the local copy of the function
are not reflected back to the calling function.

Program 9-2 Program to increment the elements of the
list passed as parameter.

#Program 9-2
#Function to increment the elements of the list passed as argument
def increment(list2):
 print("\nID of list inside function before assignment:",
id(list2))
 list2 = [15,25,35,45,55] #List2 assigned a new list
 print("ID of list changes inside function after assignment:",
id(list2))
 print("The list inside the function after assignment is:")
 print(list2)
#end of function

list1 = [10,20,30,40,50] #Create a list
print("ID of list before function call:",id(list1))
print("The list before function call:")
print(list1)
increment(list1) #list1 passed as parameter to function
print('\nID of list after function call:',id(list1))
print("The list after the function call:")
print(list1)

Output:
ID of list before function call: 65565640
The list before function call:
[10, 20, 30, 40, 50]

ID of list inside function before assignment:65565640
ID of list changes inside function after assignment:65565600
The list inside the function after assignment is:

Ch 9.indd 198 08-Apr-19 12:40:13 PM

Reprint 2025-26

Lists 199

[15, 25, 35, 45, 55]

ID of list after function call: 65565640
The list after the function call:
[10, 20, 30, 40, 50]

9.8 LIst ManIpuLatIon
In this chapter, we have learnt to create a list and the
different ways to manipulate lists. In the following
programs, we will apply the various list manipulation
methods.
Program 9-3 Write a menu driven program to perform

various list operations, such as:
• Append an element
• Insert an element
• Append a list to the given list
• Modify an existing element
• Delete an existing element from its position
• Delete an existing element with a given value
• Sort the list in ascending order
• Sort the list in descending order
• Display the list.
#Program 9-3
#Menu driven program to do various list operations
myList = [22,4,16,38,13] #myList already has 5 elements
choice = 0
while True:
 print("The list 'myList' has the following elements", myList)
 print("\nL I S T O P E R A T I O N S")
 print(" 1. Append an element")
 print(" 2. Insert an element at the desired position")
 print(" 3. Append a list to the given list")
 print(" 4. Modify an existing element")
 print(" 5. Delete an existing element by its position")
 print(" 6. Delete an existing element by its value")
 print(" 7. Sort the list in ascending order")
 print(" 8. Sort the list in descending order")
 print(" 9. Display the list")
 print(" 10. Exit")
 choice = int(input("ENTER YOUR CHOICE (1-10): "))

 #append element
 if choice == 1:
 element = int(input("Enter the element to be appended: "))
 myList.append(element)

Ch 9.indd 199 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi200

 print("The element has been appended\n")

 #insert an element at desired position
 elif choice == 2:
 element = int(input("Enter the element to be inserted: "))
 pos = int(input("Enter the position:"))
 myList.insert(pos,element)
 print("The element has been inserted\n")

 #append a list to the given list
 elif choice == 3:
 newList = eval(input("Enter the elements separated by commas"))
 myList.extend(list(newList))
 print("The list has been appended\n")

 #modify an existing element
 elif choice == 4:
 i = int(input("Enter the position of the element to be
modified: "))
 if i < len(myList):
 newElement = int(input("Enter the new element: "))
 oldElement = myList[i]
 myList[i] = newElement
 print("The element",oldElement,"has been modified\n")
 else:
 print("Position of the element is more than the length
of list")

 #delete an existing element by position
 elif choice == 5:
 i = int(input("Enter the position of the element to be
deleted: "))
 if i < len(myList):
 element = myList.pop(i)
 print("The element",element,"has been deleted\n")
 else:
 print("\nPosition of the element is more than the length
of list")

 #delete an existing element by value
 elif choice == 6:
 element = int(input("\nEnter the element to be deleted: "))
 if element in myList:
 myList.remove(element)
 print("\nThe element",element,"has been deleted\n")
 else:
 print("\nElement",element,"is not present in the list")

 #list in sorted order

Ch 9.indd 200 15-Jun-21 3:13:11 PM

Reprint 2025-26

Lists 201

 elif choice == 7:
 myList.sort()
 print("\nThe list has been sorted")

 #list in reverse sorted order
 elif choice == 8:
 myList.sort(reverse = True)
 print("\nThe list has been sorted in reverse order")

 #display the list
 elif choice == 9:
 print("\nThe list is:", myList)

 #exit from the menu
 elif choice == 10:
 break
 else:
 print("Choice is not valid")
 print("\n\nPress any key to continue..............")
 ch = input()

Output:
The list 'myList' has the following elements [22, 4, 16, 38, 13]

L I S T O P E R A T I O N S
 1. Append an element
 2. Insert an element at the desired position
 3. Append a list to the given list
 4. Modify an existing element
 5. Delete an existing element by its position
 6. Delete an existing element by its value
 7. Sort the list in ascending order
 8. Sort the list in descending order
 9. Display the list
 10. Exit

ENTER YOUR CHOICE (1-10): 8

The list has been sorted in reverse order
The list 'myList' has the following elements [38, 22, 16, 13, 4]

L I S T O P E R A T I O N S
 1. Append an element
 2. Insert an element at the desired position
 3. Append a list to the given list
 4. Modify an existing element
 5. Delete an existing element by its position
 6. Delete an existing element by its value
 7. Sort the list in ascending order
 8. Sort the list in descending order
 9. Display the list
 10. Exit

Ch 9.indd 201 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi202

ENTER YOUR CHOICE (1-10): 5
Enter the position of the element to be deleted: 2
The element 16 has been deleted

The list 'myList' has the following elements [38, 22, 13, 4]

L I S T O P E R A T I O N S
 1. Append an element
 2. Insert an element at the desired position
 3. Append a list to the given list
 4. Modify an existing element
 5. Delete an existing element by its position
 6. Delete an existing element by its value
 7. Sort the list in ascending order
 8. Sort the list in descending order
 9. Display the list
 10. Exit

Program 9-4 A program to calculate average marks of
n students using a function where n is
entered by the user.

#Program 9-4
#Function to calculate average marks of n students
def computeAverage(list1,n):
 #initialize total
 total = 0
 for marks in list1:
 #add marks to total
 total = total + marks
 average = total / n
 return average

#create an empty list
list1 = []
print("How many students marks you want to enter: ")
n = int(input())
for i in range(0,n):
 print("Enter marks of student",(i+1),":")
 marks = int(input())
 #append marks in the list
 list1.append(marks)
average = computeAverage(list1,n)
print("Average marks of",n,"students is:",average)

Output:
How many students marks you want to enter:
5
Enter marks of student 1:
45

Ch 9.indd 202 08-Apr-19 12:40:13 PM

Reprint 2025-26

Lists 203

Enter marks of student 2:
89
Enter marks of student 3:
79
Enter marks of student 4:
76
Enter marks of student 5:
55
Average marks of 5 students is: 68.8

Program 9-5 Write a user-defined function to check if a
number is present in the list or not. If the
number is present, return the position of
the number. Print an appropriate message
if the number is not present in the list.

#Program 9-5
#Function to check if a number is present in the list or not
def linearSearch(num,list1):
 for i in range(0,len(list1)):
 if list1[i] == num: #num is present
 return i #return the position
 return None #num is not present in the list
#end of function

list1 = [] #Create an empty list
print("How many numbers do you want to enter in the list: ")
maximum = int(input())
print("Enter a list of numbers: ")
for i in range(0,maximum):
 n = int(input())
 list1.append(n) #append numbers to the list
num = int(input("Enter the number to be searched: "))
result = linearSearch(num,list1)
if result is None:
 print("Number",num,"is not present in the list")
else:
 print("Number",num,"is present at",result + 1, "position")

Output:
How many numbers do you want to enter in the list:
5
Enter a list of numbers:
23
567
12
89
324
Enter the number to be searched:12
Number 12 is present at 3 position

Ch 9.indd 203 08-Apr-19 12:40:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi204

exercIse

1. What will be the output of the following statements?

i. list1 = [12,32,65,26,80,10]
list1.sort()
print(list1)

ii. list1 = [12,32,65,26,80,10]
sorted(list1)
print(list1)

iii. list1 = [1,2,3,4,5,6,7,8,9,10]
list1[::-2]
list1[:3] + list1[3:]

iv. list1 = [1,2,3,4,5]
list1[len(list1)-1]

2. Consider the following list myList. What will be
the elements of myList after the following two
operations:
 myList = [10,20,30,40]

i. myList.append([50,60])
ii. myList.extend([80,90])

suMMary

• Lists are mutable sequences in Python, i.e., we
can change the elements of the list.

• Elements of a list are put in square brackets
separated by comma.

• A list within a list is called a nested list. List
indexing is same as that of strings and starts at
0. Two way indexing allows traversing the list in
the forward as well as in the backward direction.

• Operator + concatenates one list to the end of
other list.

• Operator * repeats a list by specified number
of times.

• Membership operator in tells if an element
is present in the list or not and not in does
the opposite.

• Slicing is used to extract a part of the list.
• There are many list manipulation functions

including: len(), list(), append(), extend(), insert(),
count(), find(), remove(), pop(), reverse(), sort(),
sorted(), min(), max(), sum().

notes

Ch 9.indd 204 08-Apr-19 12:40:14 PM

Reprint 2025-26

Lists 205

3. What will be the output of the following code
segment:
 myList = [1,2,3,4,5,6,7,8,9,10]
 for i in range(0,len(myList)):
 if i%2 == 0:
 print(myList[i])

4. What will be the output of the following code
segment:
a. myList = [1,2,3,4,5,6,7,8,9,10]
 del myList[3:]
 print(myList)
b. myList = [1,2,3,4,5,6,7,8,9,10]
 del myList[:5]
 print(myList)
c. myList = [1,2,3,4,5,6,7,8,9,10]
 del myList[::2]
 print(myList)

5. Differentiate between append() and extend()
functions of list.

6. Consider a list:
 list1 = [6,7,8,9]
What is the difference between the following
operations on list1:

a. list1 * 2
b. list1 *= 2
c. list1 = list1 * 2

7. The record of a student (Name, Roll No.,
Marks in five subjects and percentage of
marks) is stored in the following list:
stRecord = ['Raman','A-36',[56,98,99,72,69],
 78.8]
Write Python statements to retrieve the following
information from the list stRecord.

a) Percentage of the student
b) Marks in the fifth subject
c) Maximum marks of the student
d) Roll no. of the student
e) Change the name of the student from
 ‘Raman’ to ‘Raghav’

prograMMIng proBLeMs

1. Write a program to find the number of times an
element occurs in the list.

2. Write a program to read a list of n integers (positive

notes

Ch 9.indd 205 08-Apr-19 12:40:14 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi206

as well as negative). Create two new lists, one
having all positive numbers and the other having
all negative numbers from the given list. Print all
three lists.

3. Write a function that returns the largest element of
the list passed as parameter.

4. Write a function to return the second largest number
from a list of numbers.

5. Write a program to read a list of n integers and find
their median.
Note: The median value of a list of values is the
middle one when they are arranged in order. If there
are two middle values then take their average.
Hint: You can use an built-in function to sort the list

6. Write a program to read a list of elements. Modify
this list so that it does not contain any duplicate
elements, i.e., all elements occurring multiple times
in the list should appear only once.

7. Write a program to read a list of elements. Input
an element from the user that has to be inserted in
the list. Also input the position at which it is to be
inserted. Write a user defined function to insert the
element at the desired position in the list.

8. Write a program to read elements of a list.
a) The program should ask for the position of

the element to be deleted from the list. Write
a function to delete the element at the desired
position in the list.

b) The program should ask for the value of the
element to be deleted from the list. Write a
function to delete the element of this value
from the list.

9. Read a list of n elements. Pass this list to a function
which reverses this list in-place without creating a
new list.

notes

Ch 9.indd 206 08-Apr-19 12:40:14 PM

Reprint 2025-26

